Systems Engineering Body of Knowledge (SEBoK) Wiki Approach

SEBoK Workshop in Toulouse
October 13-14, 2010

BKCASE Semantic Wiki Team
Presented by Hans Peter de Koning
Agenda

- Background/Motivation
- Initial Findings/Exploration
- SEBoK Wiki Use Cases
- Proposed SEBoK Wiki Transition Plan
Background

• Splinter Content Management WG established at INCOSE IW in Feb ‘2010
 – Explore approach to SEBoK content capture and management using Wiki and Modeling technologies
 – Make recommendations to SEBoK Team
• Participants – BKCASE Semantic Wiki Team
 – Sanford Friedenthal (Lockheed Martin)
 – Hans-Peter de Koning (European Space Agency)
 – Steve Jenkins (Jet Propulsion Lab)
 – David Lempia (Rockwell Collins)
 – Paola Di Maio (Advanced Knowledge Lab)
 – Art Pyster (Stevens Institute of Technology)
Wiki Motivation

• Systems Engineering Body of Knowledge is an aggregation of knowledge
 – across a broad field
 – with many authors
 – will continue to evolve over time

• Need mechanism to effectively capture and manage knowledge content over time
 – Consistent
 – Unambiguous
 – Completeness relative to scope
 – Shareable and controlled environment

• Need effective navigation and search mechanisms for inter-related content

• Soft copy documents are inadequate

• Wiki and modeling technologies offer potential solution
Initial Results from Exploration

• Current Systems Engineering Wiki’s exists
 – Wikipedia
 – SE Handbook on INCOSE Connect

• Semantic Wiki Technology build on top of MediaWiki OSS used in Wikipedia can be used to manage SEBoK content

• Some semantic modeling technology can be applied
 – E.g. definition of controlled terms/concepts and references
 – Full conceptual modeling requires too much effort
 – Can further evolve in future releases of SEBoK

• Recommend transitioning to Wiki environment
Results from Exploration
Wiki-Based Prototype Technology

• Uses MediaWiki, the open source software that runs Wikipedia
 – See http://www.mediawiki.org

• And Semantic MediaWiki (SMW) extension
 – Helps to search, organize, tag, browse, evaluate, and share the wiki's content
 – "While traditional wikis contain only text which computers can neither understand nor evaluate, SMW adds semantic annotations that let you easily publish Semantic Web content, and allow the wiki to function as a collaborative database."
 – Free open source with active developer community
 – See http://www.semantic-mediawiki.org
Semantic Wiki-Based Prototype Platform

• Hosted on http://www.referata.com/
 – Small New York based service company, active participant in SMW open source development

• Created experimentation account
 – Managed by Hans Peter de Koning (ESA)
 – Access only through specifically created user accounts
 – Small monthly fee (~20 USD)
Wiki-Based Prototype Status

• 2010 March-July
 – Original experimental content using material from INCOSE SE Handbook v3.2
 – Very easy and quick to set-up and manage
 – Appealing / easy interfaces for users and developers

• 2010 September-October
 – Parts from SEBoK v0.25 loaded into (traditional) wiki
 • From MS Word source, via OpenOffice, to MediaWiki text
 • Some manual cleanup required
 – Semantic wiki of controlled terms / concepts and references
SEBoK v0.25 Chapter 1

1 Introduction
 1.1 Purpose and Value of the SEBoK
 1.2 Origins of the SEBoK
 1.3 SEBoK Users and Uses
 1.4 Domain-Dependent Knowledge
 1.5 Enlarged Disciplines
 1.6 Guidance for the Construction of the SEBoK
 1.7 Structure of SEBoK Version 0.25
 1.8 Next Steps
 1.9 References
 1.10 Glossary
 1.10.1 Acronyms
 1.10.2 Terminology

Introduction

Purpose and Value of the SEBoK

As a discipline, systems engineering (SE) is perhaps sixty or seventy years old. The term systems engineering (SE) arose in the 1940s to enable the development of large telecommunications systems in the
Introduction

Purpose and Value of the SEBoK

As a discipline, systems engineering (SE) is perhaps sixty or seventy years old. The term systems engineering (SE) arose in the 1940s to enable the development of large telecommunications systems in the United States (Bude 2003). Today, SE is recognized worldwide for its importance in enabling the development, deployment, operation, and evolution of systems with such varied scale, complexity, and purpose as a mobile phone (a product), express package shipping (a service), anuclear power plant (a system of systems [SoS]), and a department of commerce or a national government (an enterprise). The authors of the SEBoK have taken a broad view of the term system and systems engineering. One useful definition of system comes from Astley (2004):

A system consists of three related sets:

- a set of elements;
- a set of internal interactions between the elements; and
- a set of external interactions between one or more elements and the external world, i.e., interactions that can be observed from outside the system.

The International Council on Systems Engineering (INCOSE) defines systems engineering as (INCOSE 2010):

An interdisciplinary, approach and means to enable the realization of successful systems. It focuses on defining customer needs and required functionality early in the development cycle, documenting requirements, then proceeding with design synthesis and system validation while considering the complete problem.

- Operations
- Performance
- Test
- Manufacturing
- Cost & Schedule
- Training & Support
- Disposal

Systems engineering integrates all the disciplines and specialty groups into a team effort forming a structured development process that proceeds from concept to production to operation. Systems engineering considers both the business and the technical needs of all customers with the goal of providing a quality product that meets the user needs.

Chapter 2: System Concepts and System Thinking and Chapter 3: Systems Engineering Fundamentals elaborate on these two definitions and offer additional definitions, providing the context for the rest of the SEBoK.

There are several hallmarks for the meaning of a discipline. One of the most important is an agreement by the professional community on what knowledge is included in the discipline and how that knowledge should be captured and organized to facilitate its use by practitioners, researchers, and educators. Another hallmark is that accepted framework to structure understanding of the field, a university that launches a SE program is largely on its own in deciding what students should know upon graduation, and each organization that certifies professional SE credentials and salaries must develop their own standards. The benefits of the discipline itself will be realized by ...
Disorganized complexity occurs when there are many variables that exhibit a high level of random behavior. It can also represent the product of net having adequate control over the structure of heterogeneous complex systems that have evolved due to inadequate architectural control over the system life cycle (complexity creep).

People-related complexity, where the perception of any system fosters a feeling of complexity, is another category of systems in which people are elements and can well contribute to organized simplicity, organized complexity, or disorganized complexity. The rational or irrational behavior of individuals in particular situations is of course a vital factor with respect to complexity.

Complex adaptive systems are complex adaptive systems, since each human in the system is independent.

Other categorizations and characterizations of complexity can be found throughout the literature.

Roles of Systems

An organization’s systems portfolio consists of the value-added system products or services that a public, private or non-profit organization supplies, as well as those enabling infrastructure assets. Examples of the infrastructure assets include human resource, production, marketing, supply chain, and information processing systems. These systems are the essence of their existence; thus a system focus is required as portrayed in Figure 4. It is through the utilization of instances of the system assets that the purpose, goals, and missions are achieved.

These institutionalized system assets must be properly sustained over varying periods of time, in order to be in such condition that when put into operation (instantiated), they are ready to deliver the desired effect.

The provisioning of value-added products and services such as aircraft, telecommunication equipment, banking services, health care, social welfare, etc. requires a long sustained life cycle. Typically the provisioning of such sustained systems result in product or service families. Therefore, from a generic system definition, variant products and services are produced, each one of which must be life cycle managed.

As mentioned earlier in regards to system perspectives, systems can arise as a situation that may be short-term but may have a long longevity. The situation may be thought of and even described in terms of a network of contributing elements and relationships, as illustrated in the terrorist attack described earlier. In order to meet or counteract the situation that has arisen, a respondent system is created and put into operation. For example, a respondent system is a fire brigade that is assembled from elements (equipment, consumables (water, chemicals, etc.) and personnel) in order to bring a fire under control.

Another example of a respondent system is the assembly of a military force in order to pursue a course of action to meet a situation that has arisen. Such system services are composed from available assets.
Agile development

Definition: Agile development approach provides a tailoring framework, based on an opportunity to simplify control methods and to assess the risks in so doing. The extent of tailoring is determined by whether the opportunity to shorten the project cycle is worth the risk of doing development steps out of sequence or in parallel.

Is adaptation: No

Category: Concepts

Facts about Agile development

- Is adaptation: false
- Is defined as:

This page was last modified on 2013-10-12, at 03:28:11.

Content is available under INCOSE © 2013 - All rights reserved.

Privacy policy - About Systems Engineering Sandbox - Disclaimers
First Test
with Automatic Text Extraction (ATX) Tools

• Steps
 – Parsed Chapter 2 using different generic tools (OpenCalais, Alchemy)
 – Compared the output with the glossary created manually by the editors with the output of ATX

• Overview of results
 – ATX yields more granular results and in some cases provides some categories (structure) to the terms

• Recommendations
 – Editors of the glossary could benefit from taking into account the additional granularity and categorization structure (in addition to the manual glossary)
 – New ad hoc categories for SE could be created
 – Categories could serve as metadata and could be encoded using SKOS or other suitable supporting schema

• More Info at http://tinyurl.com/2vwq5wh

(Performed by Paola di Maio)
ATX Example:
"Industry Terms" found by OpenCalais

abstract systems hard and soft systems respondent systems
adaptive systems heterogeneous complex systems situation systems
bodies defining systems Human activity systems social systems
certain human activity systems human systems socio-ecological systems
chemical impurities human-intensive systems socio-technical systems
chemical interaction human-made systems soft systems
chemicals idea systems Software systems
civil infrastructure information processing systems static systems
component systems introduction to systems storage systems
computational applications large-scale physical systems structured social and political systems
concept systems law enforcement system supply chain
conceptual systems life cycle management sustained systems
cultural systems man-made and natural systems system services
dangerous network man-made systems technology dependent
defined physical systems mechanical systems telecommunication equipment
discussion modified system product telecommunications
disruptive technology Natural systems transport systems
educational systems ordered conscious product transportation media
energy physical network transportation systems
financial systems physical systems variant products
form first systems political systems version that focuses upon business systems
government systems politico-technical systems web-site www.systems-thinking.org

SEBoK v0.25 Wiki Demo – Findings 1/4

• Loading from v0.25 MS Word into Semantic Wiki worked reasonably well
 – Load in OpenOffice – Export to MediaWiki text format
 – Still quite some manual cleanup needed
 • In particular inconsistent use of styles in MS Word source
 • A lot of "cosmetic" formatting, using e.g. bold or italics with implied "meaning" that is author dependant
 • Glossary of Terms and References do not follow standard structure

• In general the source should be written as clean as possible without any specific (manual) formatting and only follow a small set of structural rules
SEBoK v0.25 Wiki Demo – Findings 2/4

• Was possible to bulk load all controlled terms and a number of references
 – This needed some massaging through text editor and Excel
 – Wrote a number of Python scripts for data manipulation

• Maintenance/adaptation of the semantic data structures behind the demo is not so straightforward
 – First creation is easy
 – Subsequent modifications necessitate a number of manual actions to keep Templates / Forms / Properties in sync
SEBoK v0.25 Wiki Demo – Findings 3/4

- Estimated effort to convert whole of SEBoK (~600 pages) is 3 to 5 person.week
 - Including basic semantical clean-up and consistency check
- The www.referata.com prototype environment is not good enough for BKCASE production
 - Reliability/availability of the wiki environment is insufficient
 - Have not tested multi-user concurrent usage
- Since SEBoK is conceived as a traditional book it is not so obvious how to transform it into a network of wiki articles
 - Should value and honour original authorship
 - Content would need to be adapted to non-sequential reading
SEBoK v0.25 Wiki Demo – Findings 4/4

• Option is to keep a sequential book narrative
 – Wiki would still bring:
 Structure for controlled terms/concepts
 Structure for references, acronyms, hyperlinking
 Strong support for community authoring and review
 – Could potentially be done with the basic MediaWiki engine without Semantic extensions
 • MediaWiki supports Categories, Templates and Forms
 – Stepping stone to move to a "real" semantic SEBoK
 – Reduced risk
Possible SEBoK WIKI Development

• **Purpose**
 – To capture and share the SEBoK in a collaborative environment
 – To provide the option to move to a more open business process model for future SEBoK evolution
 – Maximize SEBoK visibility in the public domain

• **SEBoK Charter**
 – http://www.bkcase.org/about-bkcase/project-charter

• **Tentative Schedule as of Sept 2010**
 – September 2010 - Version 0.25 SEBoK released
 – September 2011 - Version 0.5 SEBoK
 – September 2012 - Version 1.0 SEBoK

 – **Sustainment**

<table>
<thead>
<tr>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEBoK v0.25</td>
<td>SEBoK v0.50 Wiki</td>
<td>SEBoK v1.0 Wiki</td>
<td>SEBoK Systainment</td>
</tr>
</tbody>
</table>
SEBoK Use Cases

• SEBoK Team Member
 – Any person that has access to SEBoK development
 – Role: Review and modify articles

• Author Team
 – A specialized SEBoK team member
 – Role: Author new and existing SEBoK articles; give additional authors ability to modify their articles

• Administrator (Core Team)
 – A specialized SEBoK team member
 – Role: Setup and backup the wiki; publish and restore SEBoK information; re-assign access privileges for articles; manage Wiki

• Public
 – Any person that discovers and wants to read or print the published version of the SEBoK; provide comments, examples, and/or best practices through child pages (decision point)
SEBoK Assumptions (development or pre v1.0)

- SEBoK v0.25 will be imported with additional development for SEBoK v0.5 completed in the WIKI
- Development edits are only visible to SEBoK team members
- Published (released) information developed by SEBoK team members is read-only to the Public with comments accepted (decision point)
- The public can add examples and best practices as children articles to published articles (decision point)
- Development is hidden from the public; only approved/published “articles” are made public
Create, modify, or delete SEBoK articles

- Each major release starts on the Development WIKI.
- Only SEBoK team members can see items on the Development WIKI.
- The initial content of the Development WIKI is an import of the original document (release 0.25).
- At the end of this use case, the articles have been created or edited with new updates. All articles are complete and ready to publish.
- Future SEBoK development is done on the Development WIKI.
Publish all articles as a specific release version

- Publishing moves the completed development WIKI articles into the Production WIKI
- All new articles are approved for release to the Production WIKI
- At the end of this use case, the Development WIKI material is moved to the Production WIKI
Anybody on the internet can find the SEBoK through search, following links from any web site, or any other means.

The Wiki (community defined option) can log users that comment on articles, download, view and/or printout the SEBoK.
Create, Modify, and Delete Examples and Best Practices

- A person contributes examples and best practices to extend the body of SE knowledge
- SEBoK WIKI articles are available to summarize the industry examples and best practices.
- At the end of this use case, a member of the public has a new or modified article linked into the SEBoK
Development versus Sustainment Phases

• Up to the V1.0 Release (Development)
 – The WIKI Administrator will setup and backup the wiki; publish and restore SEBoK information; re-assign access privileges for articles; manage Wiki
 – Author Team will author new and existing SEBoK articles; give additional authors ability to modify their articles.

• Post V1.0 Release (Sustainment)
 – Choice 1 – Publish model. Maintain the development and publish wiki. Select authors make edits to the SEBoK articles on the development wiki and publish them to the publish wiki.
 – Choice 2 – Wiki model. The SEBoK articles are opened for editing by the public. Authors monitor, arbitrate, and organize SEBoK article development.
Conclusions

• Future SEBoK governance during sustainment is flexible
 – Article write permission can be opened for anyone to modify, can remain locked, or could be allowed with a moderator

• SEBoK v0.25 is released in MS Word format
 – This can be used to populate an initial version for v0.50
 – Would be very beneficial to issue a number of editing guidelines (stick to predefined styles) so as to minimize manual rework
 – Additional development could be conducted in Wiki environment

• A decision needs to be made on how to manage content of the SEBoK post v1.0 release – sustainment phase

• Given the approach taken in v0.25 the option to use a "classical" (non-semantic) Wiki should be considered as a low risk approach